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Quantities are introduced which directly characterize the deformation of 
a normal element related to a given arbitrary line of the middle surface 
(in [ 7 1 , [ 8 1 they were introduced for a line of curvature). 

By means of these quantities the displacement vector is determined by 
using one contour integral (in contrast to [4 I. This (by analogy with 
the procedure used in the plane problem) permits the construction of a 
theory of dislocations and the separation from the stress function of the 
nonsinglevalued parts related to the nonselfequilibrated loadings on the 
contours of the multiply connected regions. A dislocational approach’ to 
problems of the action of concentrated forces and moments on a shell is 
indicated. 

1. ‘lhe middle surface of the shell is referred to lines of principal 

curvature Q a*. ‘lhereby A,, 
principal r&i of curvature 

A,, R,, R are Lam6 parameters and the 

respective y. 1 with regard to the boundary 

contour L, we. assume that it consists of several closed smooth contours 

L.(j = 0, 1, . . . . n), which may not coincide with the lines of principal 

ckvature. Together with the basic system of unit vectors I el, e2, e,, 1, 
we introduce a system t 1 I , related to the given line L'I ev, et, enI 
(Fig. 1). Obviously (Fig. 2), 

(y = -t (al (s), a2 (4) = else,) (1.1) 
We also introduce 

2 co52 y , sin’+.* 2 
17; = --Tg- 

sin2 y 
x, = R1 

co9 y 1 
-1- T 9 -i - - = sin 7 cos r ($ - i2) 

R2 %, 
(1.2) 

We relate to the line L' the displacement vector 

U = Se, + 7,et + wen = ue, + ve, + we, (1.3) 
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Fig. 1. 

and the rotation vector 

Q = - O)lcV + o~,ef - mfven = - +e, + 913s - wtven 

It is not difficult to establish the following relations 

OJ, = COSy8+ sin7!+, 011 = - sin 79 + cos 7+ 

WV = COS’ 702 + sin 7 Cos 7 (s2 - q) - sin2 70, 

lhe deformation of a normal element, whose middle line is I,‘., is 
characterized by the stretching of the middle line 

El = COS’ 7E2 - sin 7 cos 70 + sin2 7s, 

and the vector of change of curvature 

where 
xf = - xffcv + xfvef --- zf,,e,, 

(1.4) 

(1 ..:,) 

(1.6) 

(l.i) 

%I, - cos27x, - 2 sin 7 ccs 7~ _I- sin? 7x1 _1-- sin 7 cos 7 (G. - 7, 

q., = sin 7 cos 7 (x2 - x1) f (cos? 7 - sin? 7) T - 

- 

an+0 an, \ 
%,,r = -- 

---------1 

- y & [sin 7 cos 7 (q - Ed) + sin2 701 

Using the relations written down above and the known rules of diffe- 
rentiating unit vectors [ 2 ] , we may establish twr, basic relations 
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Here 

NJ 
2% = wvev + Wr- 6.m = wt + Qt x ef 

an, - - - X( 
as, 

a siny a 
+ 

cosy a -- -_ 
$7 = - Al aal Aa aaa 

(1.8) 

(1.9) 

is the derivative along the tangent with respect to L’. lhereby 

We also have the following relationship: 

+ 
cosy an, sin y ~AI’ -- 
AIL12 aal + -- W’-H Al& aaz ) 

% (1.10) 
t 

( 
a cosy a sin y a 

q-- 
-- 

---+ Aa 8a2 A1 aal 
(1.11) 

indicating the derivative with respect to the normal of L’. 

Fig. 2. 

‘lke following quantities are .associated with the element considered: 
the traction vector 

where 
T,’ = Tvv’ev -t_ Tvl’et + T,,,‘e,, (1:13) 

T,,’ = T,, - 2 
vf 

= T, cos2y f 2s sin r cos r + T2 sin?r+ 

(cos2 r - sin2 7)s + sin 7 cos 7(T, - T,) + 
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T al+f “f cos y ’ aA&f~ 
“,,’ = T,,, + ils = - 

1 44 ( 
I 

da1 
siny ‘aA1M2 f-- - 

t 

aAe2H 

AA aaz + aa, -$M,) 

+ cos2 7 2Hl + 7 A_ [sin 7 COS 7 (M2 - Ad,) -_2H sin2 71 

and the bending moment 

MV = M, cos2 7 + 2H sin 7 cos 7 + Ikfz sin2 7. (1.13) 

Let us express the displacement vector through the canponents of strain 

and rotation. Frcun (1.8) 

U=U,_t {( efcf + Pt ,x ef} dsl 

% 

Taking into account 

ef = a (r - m) 
as, (1.14) 

(F, r. are respectively the radius vectors of the point L’ and its original 

position), and taking into account (1.9), after integrating by parts we 

obtain 

U==Uo+S2tox(r-r,)+ i{E~et--*X(r-rlo)}dS(+(SLx~~~,) x (r -rJ (1.15) 

% % 

2. Following Love ([ 3 1, p. 232), we shall define as dislocations non- 

singlevalued displacements (in a multiply connected region) corresponding 

to unique components of strain. Therefore, assuming K t and c t to be 

singlevalued, we investigate the character of possible multivaluedness of 

displacements. 

Fig. 3. 

We consider contour Lj’ originating and terminating (Fig. 3) at point 

Mj and embracing Lj. lhe initial value of the displacement vector is 
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U- = Uo _t Qt, X (r - rj) 

Following the contour L. we may, in conformity with (1.151, return to 

M with a different value o f a displacement vector: 

U+=U,+Q,,x(r- rj) + + {wt - xf X(r - rj)> dsl + (+ WW x (r - rj) 

is 

L’j l?j 

lJius the increment of the displacement vector in the passage along Lj’ 
given by the expression 

U+-UU-yUj+S2jx(r--rj) (2-l) 
The constants 

Uj= {Wt-%X(r-rj)}dSl, . 
$ 

pi z 
4) 

x&l (2.2) 
Lj’ i,j’ 

will be called the parameters of dislocation. 

We note that they do not depend on the shape of the contour which 

embraces Lj. This can easily be verified by considering the integral on 

the sumnary contour formed by two arbitrary contours Lj’ and Lj”, which 

embrace L . . Transforming the contour integral in the region enclosed by 

this con&r, with the aid of (1.11, (1.6) and (1.71, we verify that’ the 

integrand will vanish by virtue of the continuity equations of the middle 

surface. This proves uj and aj to be independent of the shape of Lj’. 

A fairly simple procedure may be advanced for the construction of the 

dislocational part of the displacement vector. To this end we consider 

the expression 

t”j + Qj X (r - rj)} @j (2.3) 

6th regard to Qj(al, a2 ) wz assune: 

(1) that it gives in passing along Lj an increment of 1, and in pass- 

ing along the remaining contours, zero; 

(2) its derivatives in an arbitrary direction are singlevalued func- 

tions. 

It is not difficult to verify that the expression (2.31 satisfies the 

requirements imposed on a dislocation. Examples of construction of dis- 

locational functions will be considered below. 

Problems regarding the analysis of shells from which a small portion 
is removed (or added) and then one edge is joined with the other by means 

of a rigid body displacement, lead to dislocational displacements. It is 

assumed thereby that the edges of the cut are congruent. 
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We shall also assume that the magnitude of the dislocation parsmeters 

are know& Then the dislocational displacement sought may be given the 

form 

U = 2 {Uj + Qj X (r - rj)} @j + U”” 
1 

(2.4) 

where p* is the singtevalued part, permitting the boundary conditions 

and the surface loading which obtain in the problem considered to be met. 

From t 1.8) follows 

au au au 
et zK *et, cot” = &; ’ 5, , 03~ = - -- .e,l 

f as, 

Using these relations, and also (l.lO), (1.14) and the obvious equal- 

ity ~3(r - r .1/d sy= ev, 
deformation’ 

we obtain the expression for the components of 

(2.5) 

We illustrate the statements made above with sn example of a shell of 

revolution (Fig. 41, from which a portion has been removed; this portion 

was bounded by two close meridians and the edges subsequently brought 

into contact. 

We have (1 1 1, p. 241) 

!xr = 8, ff* = ‘it A, = If, (O), A, = p = I<, (0) sin 0, $ = fir cos 0 

We put 

U, -- 0, 8, = %e,, (I%=;9 ‘. 

Since 
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(r - rJ = pe, + ze,, UP = u;g zz 0, CP = & Q,,pyz 

Finally, using (1.6) and (1.7), from (2.6) we obtain 

(2.6) 

&I = 0 = x, = T = 0, ’ Qzu 
1 1 

s- 2 - 2; xz = 27; Qz, Rz P-7) 

With the aid of these expressions, together with the relations conbin- 

ing the stress-resultants with the components of deformation, it is not 

difficult to obtain the expressions for the stress-resultants, and with 

these to determine the static boundary condition and the surface loading 
which correspond to displacements (2.6). 

In the preceding 

tude of the contour 

it follows that the 

Fig. 4. 

discussion we made no assumptions regarding the magni- 

L.. My its existence was of importance. From this 

r&lations obtained will also be valid when Li is 
shrinking to a point, if the close vicinity of the degenerate contour in 

which the quantities obtained may lose their significance and may become 
infinite is not considered. 

3. Using the similarity of the equations expressing equilibrium 

the continuity of the middle surface [ 2 I , we introduce the stress 

tions u”, v’, TD’ by means of the following differential relations: 

T, = T,+ -j- Ehcx,” (u’, v’, K’), iv1 = iv,* - Ehcs,” 

T2 = T,* f Ehcx;, MS = M,* - Ehcq h 
c= 

S = rS* - Ehcr”, H=H*+Ehc$o” v 12 (1 - 112) 

func- 

(3.1) 

Here and later the superscript indicates that the quantity is con- 

structed by means of the stress functions. Let Ti*, T2+, Si*, Ml*, M2* 
be a solution of the nonhomogeneous system of equilibrium equations. 
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It is not difficult to show that the expressions written down give the 

general solution of the system of equilibrium equations. Relations (3.1) 

generalize the Lur’e and Gol’denveizer functions [ 4,s 1 in a natural 

manner for the nonhomogeneous problem of the theory of shells. Using the 

functions thus introduced, with the aid of (1.12), (1.13), (1.6) and 

(1.7)) the traction vector and the bending moment applied to a given con- 
tour may be given the fc Ilowing form: 

’ T,,‘ == TyyJ* -; Bhcxllo 

i, 
! 

T./ =: Tyf’* - Ehcxlvo 

TV,!’ := T,,,,‘* + Ehcx,,,’ 

(3.2) 

(X3) 

‘lhe starred quantities correspond to the system of functions (T1*, 

. ..) H*). 

4. Let us consider the portion of the contour stOst (Fig. 5). The 

principal traction vector, applied to the arc stOst is 

“I 

F = \ T,‘rlsl : ‘f T.,‘*cI’s, - /<i/c f qcdsI 
. 

“10 ‘10 SIrI 

Recalling (l.o), we obtain 

F = 1:’ - I:‘l/c $&” - Si,,,‘} (:),./I j 

The principal moment of all tractions and moments, applied to st,,st 

is 
Sl “1 

’ M =: 
! 

iII,eldsl -i_- 
s 

(r x Ty’) ds, _- 

I sm FfO 
Sf $1 

= 
s 

M,’ . eldsl + 
s 

(r x T,” ) dsl - I’lx (r X xt’) dst 
810 "LO *fn St0 

Substituting K t by its expression from (1.9) in the last integral, and 

integrating by parts the integral thus obtained, and taking into account 

(1.8) and (1.141, we derive 

M = M * - E/us {(r - r,-,) x $21” + U” - U,O} (3.5) 

Solving (3.4) and (3.5) with respect to u”, we obtain 

U”= U,,“+C2,~x(r-rO) -A {(M-M*) +(F-F*)x(r--0)) (3.6) 

‘Ihe last relationship is formally analogous to the displacement vector 
(1.15). Therefore, as was done for the dislocations, it may be shown that 
in the passage along Lj, the stress functions vector will receive an 
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Here F. and M. are the principal vector and 
alf the &action: and moments applied at: LjS 

the principal moment of 

Fig. 5, 

an arbitrary stress functions vector may be represented in 

lJb = Sj {f’ a + Bj” X (P - Pj)} CDj -I_ U”“” (3.S) 

ttre same dis~~at~~~a~ function and Uoao is the s~~~~e~~u~ 
ensures the satisfaction of the equations of continuity with 

tractions and moments constructed by (3.8). 

Let us assume that Fi and Mi are known, The quantities Fj* and Mi* 
should also be considered kaova~, because they are constructed by means of 
the partial solution of the system of equations of equilibrium we have 
selected. Thus, Ujo and Q.O are assumed to be known. IIhe fundamental 
difficulty in finding the’nonsinepllar part lies in the construction of 
the dislocationaf functions Q... ha soon as these are found, with the aid 
of (2,5), (3.2), (3.3) and (3.‘1), we obtain the following expressions for 
the tractions and moments: 
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(We = r(nlj - Mj*) + (Fj - Fj*) X (r - rj),) (3.:)) 

As before, the size of the internal contours is quite inmaterial. If 
one of them (for example Lj) is shrunk to a point, conserving the magni- 
tude of the principal vector and the principal moment, then (3.9) gives 
the values of the tractions and moments for a concentrated loading of 
given intensity. Let us investigate the character of the singularity of 
the solution (3.9) in the neighborhood of the application of concentrated 
loading (assuming that the point considered is not singular for the middle 
surface). 

Let us introduce a local semigeodesic system of coordinates at the 
point ([ 6 1 , p, 4451. with an accuracy within small quantities of higher 
order for v << 1 (Fig. 6, 7) (the subscript j is omitted) we may obtain 

‘Ihe index 0 indicates that the corresponding quantities are evaluated 
at the pole. 

We resolve the principal vector and the principal moment into com- 
ponents tangential and normal to the surface: 

F = 17~ f evF -+ F,le,lO, Rl = :lIT * evJL i_ .lIliCIiO 

Obvious1 y, 
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With the aid of these relations, retaining in (3.9) only the terms 

with singularities, we obtain 

T,’ - ;; {a’ Fr+ an F,,$- j!i” .21, + p”AII,,) 

where 

qT = 
2 cos2 (Yo - YF) 

V 
eyF + 

sin 2 (TO - yF) , 

V 
elfi, 

1 
an == u e,,,, (3.10) 

n/I, = & { _ sin (nv- TM) MTI 
. I 

(3.11) 

If we retain only the principal singularities in expressions (3.10), 
then 

2xT,’ - 
[ 

?cos? (I’” - y,, ) sin 2 (v. - yF) 

V 
eVF + v etF 1 FT $- t e,,F, + 

-I- 
sin (~0 -- Ye,) 

C,,,ilIT +- L sin (Y” - :‘.,I) 
- 

V2 V2 
e? + ‘OS (‘“,L yM) e,nf] M,, (3.12) 

From (3.11) and (3.12) it may be seen that the character of the 
principal singularity does not depend on the form of the middle surface 
or the choice of coordinates. 

4. All the above is of a static-geometrical character and does not 
depend on the form of the relations between the tractions and moments and 
the components of strain of the middle surface. We have considered only 
such singularities of the solution as are static. In particular, the well- 
known logarithmic singularities are lacking. 

lhe latter will occur if, assuming a generalized Ilooke s law, we de- 
termine the periodic part of the stress functions vector Uuoo. 

A detailed study of this question requires the use of additional 
mathematical apparatus, and will be presented in a separate paper. 

We shall here confine ourselves to the consideration of a simple 
illustrative example to clarify what has been said above. Consider a 
circular plate subjected to a central normal load P (Fig. 8). We have 



370 

i 1 
lg=K 

Further 
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0, aI = p, @, = 97 n, = t-0, A, = r&J (p = ;, 

Fl=P.onr MI=@ (r--J=ropep 

FIX@ - lo) = J+*pe,, wp = Pr,pe, 

we have aasuned FI* e MI* = 0. Further, letting y = 0 and y = 1/2 n, from 
expressions (3.9) we obtain 

Let us now determine the periodic part of the stress vector @O”. From 
the character of the state of stress it follows 

u 000 =U cxx @), **= = Woo* = 0 

Ihe total bending mments take on the form 

‘Ihe equation of continuity will be written down in the following form: 

Sbstituting the expressions for the manents (4. l), we obtain a diffe- 
rential equation for the determination of uooo: 

Its particular solution has the following form: 

Using it, we obtain from (4.1) the well-known expressions (see I9 1 ) 
for the bending momenta: 

‘l’hus the treatment of a simple err&e by means of the dislocational 
procedure has permitted all the singularities of the solution to be 
i aol ated. 

T.n the general case the problem is reduced to finding particular solu- 
tion of the system of equations in terms of complex displacements [ 8 1 , 
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Fig. 8. 

in which the quantities WI*, T2*, S *, Hi*, M2*, fP) are constructed with 
the aidof themethod discussed here. 

1. Novozhilov, V. V., 

BIBLXOGKAPHY 

Teoriia tonkikh obolochtk (Theory of thin shcllrf. 

Sudpromgiz, 1951. 

2. Gol’ denveizer, A. L., Teoriia uprugikh tonkikh obolochck (Theory of 

cZartic thin sheZ2s). 1953. 

3. Love, A., Mattcmotichcskaia tcoriia uprugosti (Mathematical theory of 
elasticity). 1935. 

4. Lur’ e, A. I., Obshchaia teoriia uprugikh tonkikh obolochek (General 
theory of elastic thin shells). PUN Vol. 4, No. 2, 1940. 

5. Gol’ denveizer, A. L:, Uravneniia teorii obolochek (The euuations of the 
theory of shells). PMM Vol. 4, No. 2, 1940. 

6. Kagan. V. F., Osnovy teorii powerkhnostii (The fundarcntals of the 

theory of surfaces), Part I. Gostekhfzdat, 1947. 

7. Chernykh, K. F., 0 sopriazhennskh zedachakh teorii tonkikh obolochek 
(On conjugate problems In the theory of thin shells). Doklady AN 

SSSR Vol. 117, No. 6. 1957. 

8. Chernykh, K. F. , 0 variatsionnom printsipe kompleksnoi teorii obolochek 
(On a variational principle in the complex theory of shells). PMM 

Vol. 22, No. 2, 1958. 

9. Timoshenko, S. P., Plastiny i obolochki (Plates and shells). 1948. 

Trans E ated by G. H. 


