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Quantities are introduced which directly characterize the deformation of
a normal element related to a given arbitrary line of the middle surface
(in[71, [8] they were introduced for a line of curvature).

By means of these quantities the displacement vector is determined by
using one contour integral (in contrast to [41. This (by analogy with
the procedure used in the plane problem) permits the construction of a
theory of dislocations and the separation from the stress function of the
nonsinglevalued parts related to the nonselfequilibrated loadings on the
contours of the multiply connected regions. A dislocational approach to
problems of the action of concentrated forces and moments on a shell is
indicated.

1. The middle surface of the shell is referred to lines of principal
curvature a,, a,. Thereby A, A,, R, R, are Lamé parameters and the
principal radii of curvature respectively. With regard to the boundary
contour L, we assume that it consists of several closed smooth contours
L.(j =0, 1, ..., n), which may not coincide with the lines of principal
curvature. Together with the basic system of unit vectors {ei, e, e l,
we introduce a system [1], related to the given line L'le,, e, e |
(Fig. 1). Obviously (Fig. 2},

(Y ="v(a1(s), az(s)) =er-e) (1.1)

We also introduce

1 cos?y , sin?~ 1 sin?y cos®y 14 . 4 1
= - . — © —— == 8§in = — = 1.
R, TR R, ST Cos Y (-Rl Rz) (1.2)

R R T R’ R,

v

We relate to the line L’ the displacement vector

U = te, + 7e; -+ we, = ue, - ve, + we, (1.3)
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and the rotation vector
Q= —oe,+ o0 —oye, = — 4e, -+ de; — wnen (1.4)
It is not difficult to establish the following relations
0, = cos ¥4 + sin 79, oy = —sinyd -+ cos ¢
0y = ¢08% Ty -+ sin g cos 7 (8, — €,) — sin?yw, (1.5)
The deformation of a normal element, whose middle line is L’, is
characterized by the stretching of the middle line
& = €0s® Y&, — sin y cos Y + sin?ye; (1.6)

and the vector of change of curvature

X = — Ay @y - %8 — 28y

1.7
where (-1

R 9 . ) . . w €2 —E)
7y == €082 %y — 28in 7y cos Yt - sin® yx - sm'r(,os'r(-R—l-—— R, >

71, = sin y cos 7 (ve — %;) -+ (cos® ¥ —sin? )t —

siny cos vy ‘sindy  costy
r Ee—e) + (= T A
o . fOsY (8.4222__6/110)__% s\ __siny (OA,el_aAgm _%E )_1
e Ay Ay \ ooy o oa, 1) Ay Az \ daa oy da; 2,
siny 9 [ . o
N = — &,) — cos? _—
-7 73 [sm“(cos"((e1 &2) — COS *(w]

cosy @ . .
— I 7w [sin v cos ¢ (g, — &) + sin? yw]

Using the relations written down above and the known rules of diffe-
rentiating unit vectors [2 ], we may establish two basic relations
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ou

w = W€, + E8p— 08, = €€ + Q Xe (1. .8)
t
U (1.9)
s,
Here
9 _ _sm~(i+cosyi
as‘ - A; da, Az O0ay

is the derivative along the tangent with respect to L’. Thereby

dw, ay cosy dA; | siny 84, @y a"’tv "’
x“"a_+(a¢,+A,Agda1+A1A253;—> VTR T +R
=000 (70 4 covy 0 sin o RS
785, T \8s, | AiA:8a; ' AyAs day R,
We also have the following relationship:
_ au 9 _cosy @ smy 6)
o=—7en  (=Gla 4 XL (1.11)

indicating the derivative with respect to the normal of L’.

& 18

Fig. 2.

The following quantities are associated with the element considered:
the traction vector

Tv’ = Tw’ev ‘.L Tvt,et + T\m,en (" ] 2)
where

Ls
fvvlsz

M
— 5 *=T cos?y + 25 sin y cos 7 + T, sin?y+

vt
2H M, — M,
—r. sin v cos
+(R,+ —*)siny cos 7

M
Ty =Ty + 7"—‘ = (cos? y —sin?q)S <+ sinycosy(Ty — T,) +
t

+ sin wj{:osy (1”2 -Mx) + < 51m sint y + cosc )2H
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oM, _ cosy [9AMy | 0A2H aA2
— 4
dSt A1A2 ( 6a1 + 0ao ‘[2)
siny /0A1 M2 0A2H 6A1 sin sin y
+ AA; ( dats + day aa, M ‘) Ay da

-+ cos?y 2H] 4- c;s’ a [siny cosy (My— M,) —2H sin? 4]

Tvn’ = Tvn +

[sinycos y (M, — M,) +

and the bending moment
M, = M, cos®y + 2H sin y cos 7 + M, sin?y. (1.13)

Let us express the displacement vector through the components of strain

and rotation. From (1.8)
5

U =U,~+ S {0y 4 @ X e} dsy
stn

Taking into account

_0(r—r,)
€y = -Tsl"o" (1.14)
(r, r, are respectively the radius vectors of the point L’ and its original

position), and taking into account (1.9), after integrating by parts we
obtain

St 3‘
U==Up + @ x (r—ro)+ | (e —mex(r —ro)ydse + (§ wdsr) x (v — 1) (1.15)

Bt, St,

2. Following Love ([ 3], p. 232), we shall define as dislocations non-
singlevalued displacements (in a multiply connected region) corresponding
to unique components of strain. Therefore, assuming x, and €, to be
singlevalued, we investigate the character of possible multivaluedness of
displacements.

Pig. 3.

We consider contour L.’ originating and terminating (Fig. 3) at point
Mj and embracing Lj. The initial value of the displacement vector is
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U™ =T, + 2, X(r—r;)

Following the contour L. we may, in conformity with (1.15), return to
M with a different value of a displacement vector:

Ut =10+, X(r—r;) + fg) {cie — % X (r —1;)} ds; + <(§ % ds) X (r —r;)
L’j L']'
Thus the increment of the displacement vector in the passage along L j'
is given by the expression

Ur—U =U; +9Q;%x(r— r;) 2.1)

The constants

U; = § {eer — % X (r —r;)} dsy, Q = &) %, ds, (2.2)

L;" I‘jl

will be called the parameters of dislocation,

We note that they do not depend on the shape of the contour which
embraces L.. This can easily be verified by considering the integral on
the summary contour formed by two arbitrary contours L.” and L.”, which
embrace L.. Transforming the contour integral in the region enclosed by
this contour, with the aid of (1.1), (1.6) and (1.7), we verify that the
integrand will vanish by virtue of the continuity equations of the middle
surface. This proves Uj and Qj to be independent of the shape of Lj’.

A fairly simple procedure may be advanced for the construction of the
dislocational part of the displacement vector. To this end we consider
the expression

{Uj + % (r —r,)) ©; (2.3)
With regard to q)j(al’ aZ) we assume:

(1) that it gives in passing along LJ. an increment of 1, and in pass-
ing along the remaining contours, zero;

(2) its derivatives in an arbitrary direction are singlevalued func-
tions.

It is not difficult to verify that the expression (2.3) satisfies the
requirements imposed on a dislocation. Examples of construction of dis-
locational functions will be considered below.

Problems regarding the analysis of shells from which a small portion
is removed (or added) and then one edge is joined with the other by means
of a rigid body displacement, lead to dislocational displacements. It is
assumed thereby that the edges of the cut are congruent.
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We shall also assume that the magnitude of the dislocation parameters
are known. Then the dislocational displacement sought may be given the
form

U= (U;+ X (r—r))} @ + U (2.4)
E)

where U0 is the singlevalued part, permitting the boundary conditions
and the surface loading which obtain in the problem considered to be met.

From (1.8) follows
au

au U0
T e == e L O3 O} o5 e e
€t ast ey, Oy ast 43 3 3&1 €y

Using these relations, and also (1.10), (1.14) and the obvious equal-
ity d(r - r; )/8s = e,, we obtain the expression for the components of
deformauon

. 82(Dj 6D
l’.”j:*'“wj-en—g-s-—?‘—{—[—— 5 __ __29 ev} _....,._.at _—
. Oy | cosydd, | sinyaA o0,
‘V] En <5T5‘-¢ + 74, ArAy da; AL, dag [ ds
GRON 0.
e e W LA I .. —2
Hpyj = W, €n (,m‘asv T[ W + W} 1{, 9} ev} a&‘v -+
v c0s y 0As siny 04, e, o,
i S N e M s e —— s A
+[(.38£ ! A3 As 9y +Al/loaa >\V \ ] R! +9_7 el} 85"
, cosyclfig_ sin v 04, e
Xtmj = \lv ev aS + [ 6s, + A1A; 90, A]Az daz )W €
0, e, 0D,
—9Q..¢ }-,_3 W%
! n- dst ! Rt asv
O(D]-
o= W2 (W;=U; +0;%(r—ry) (2.5}
t

We illustrate the statements made above with an example of a shell of
revolution (Fig. 4), from which a portion has been removed; this portion
was bounded by two close meridians and the edges subsequently brought
into contact.

We have (1], p. 241)

=90, ap=15, A4 =010), 4=p=10,(0)sinl, % = I, cos @

We put
U, =0, Q = RQ,e,, D, = 5. P

Since
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1
(r — 1)) = pes + ze,, uf =w¢ =0, v¢&=7-Cnpp (2.6)

Finally, using (1.6) and (1.7), from (2.6) we obtain

s=w=x=1t=0, sz=2%9,1, x2=2%9,11—;; (2.7)
With the aid of these expressions, together with the relations combin-
ing the stress-resultants with the components of deformation, it is not
difficult to obtain the expressions for the stress-resultants, and with
these to determine the static boundary condition and the surface loading
which correspond to displacements (2.6).

Fig. 4.

In the preceding discussion we made no assumptions regarding the magni-
tude of the contour L., Only its existence was of importance. From this
it follows that the relations obtained will also be valid when Lj is
shrinking to a point, if the close vicinity of the degenerate contour in
which the quantities obtained may lose their significance and may become
infinite is not considered.

3. Using the similarity of the equations expressing equilibrium and
the continuity of the middle surface [2 ], we introduce the stress func-
tions u%, v%, v° by means of the following differential relations:

Ty =T,* + Ehex,® @°, v°, u7), M, = M,* — Ehce,®
T2 b= TQ* + Ehcxlo, M2 = Mz‘ —_ EhCSIO h (3 1)
¢ = My — *
S = 5* — Eher®, H = H* 4- Ehc zi o° ( Viz{— l*’))
Here and later the superscript indicates that the quantity is con-

structed by means of the stress functions. Let Ti", TZ" Sl", Ml‘, MZ"
be a solution of the nonhomogeneous system of equilibrium equations.
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It is not difficult to show that the expressions written down give the
general solution of the system of equilibrium equations. Relations (3.1)
generalize the Lur’e and Gol’denveizer functions [4,5] in a natural
manner for the nonhomogeneous problem of the theory of shells. Using the
functions thus introduced, with the aid of (1.12), (1.13), (1.6) and

(1.7), the traction vector and the bending moment applied to a given con-
tour may be given the fcilowing form:

’

, T, =T, " + Ehex,” 3.2
T, =T, *— Ehcy” ) " " ”0 (3.2)
T, =T, -—Ehex,

M,=M*—Fhes ° , Ve o q .
‘ T, =T, + Ehex,, (3.3)

The starred quantities correspond to the system of functions (T *,

veey H®)L

4. Let us consider the portion of the contour s, s, (Fig. 5). The
principal traction vector, applied to the arc s s, is

St St 1

F — Q T, ds, = § T, *ds; — Ilic S %58,
Sto fto Sto

Recalling (1.9), we obtain

F = F — Ehe {Q° — Q) (3.4)
The principal moment of all tractions and moments, applied to s,gs,
1s
5t St
M = \ Meds, -+ g (rxT,)ds, =

i Stoy Sto
St £t 5t 8¢

= g M) eds + g (rx T.,")ds, — Fhe JS 5 eds, - S (rxw°) ds,}
810 Sty St St

Substituting x, by its expression from (1.9) in the last integral, and
integrating by parts the integral thus obtained, and taking into account

(1.8) and (1.14), we derive
M=M"— Elc {(r — ) xR° + U° —U%) (3.5)
Solving (3.4) and (3.5) with respect to U°, we obtain
U° = Uy + QX (r — 1) — oz (M — M)+ (F —F)x (r— 1)} (3.6)

The last relationship is formally analogous to the displacement vector
(1.15). Therefore, as was done for the dislocations, it may be shown that
in the passage along L]., the stress functions vector will receive an
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increment -
(3.7)

N e M,—M" F,—F
U — U =Uf+$2f>< {!“"'rj) (\B]_ == }Ehc 2 y ﬁjoz_w>

Here F. and M. are the principal vector and the principal moment of
all the tractions and moments applied at Lj,

o0
N ..
% e,/
M Wty
Fig. 7.

Fig. 8.

Farther, an arbitrary stress functions vector may be represented in
the fomm

U = 5 {11 ° L Q% (£ — 1;)} @; -+ U® (3.8)

where ®. is the same dislocational function and U0 is the singlevalued
part, which ensures the satisfaction of the equations of continuity with
tractions and moments constructed by (3.8),

Let us assume that F, and M, are known. The quantities F.* and M}.*
should also be considered known, because they are constructed by means of
the partial solution of the system of equations of equilibrium we have
selected. Thus, U.% and 0.° are assumed to be known. The fundamental
difficulty in finding the nonsingular part lies in the construction of
the dislocational functions .. As soon as these are found, with the aid
of (2.5), (3.2), (3.3) and (3{7), we obtain the following expressions for
the tractions and moments:

vy v 81’(}}} o O A . omj
:ij =Wj'0n'6;‘;f'~4“[w‘.i-7?“»'-{—2(1‘5““1.‘])-9"]%_
‘dy  ecosvdds | siny 5&41) o b
+(6x£ e T gar) Vit
¥, ) ¢ o,
" = e WPy, s 1 ] e WS b WO L (F. — TN, 4o
79“ W, L 03‘(’)!“‘) H { WJ -\Rf ! \\'J Ilv{ (F} F; ) e\;] USV i
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cosy dAs | sin v 94, ° W .0 e, ) . am;
+ Kas, + Zas AA; B0y + ArAz afle) Wyo-en— W, R—t +(F;, —F, )etl_‘fg;
0*D; L5 4dy | siny 0Ar\
Tv R [} o ( 3y 2 Y 1
nj W Rl ) 08 2 + l_ dsy A1 Az oy A)Ag adz) e‘ +
. e, 6CD
+2(F;—F, )-en} W R
] OCD {
M,; = Wpe.e ! ast (We={(M;— M) + (F;—F) x—r)) (3.9)

As before, the size of the internal contours is quite immaterial. If
one of them (for example L.) is shrunk to a point, conserving the magni-
tude of the principal vector and the principal moment, then (3.9) gives
the values of the tractions and moments for a concentrated loading of
given intensity. Let us investigate the character of the singularity of
the solution (3.9) in the neighborhood of the application of concentrated
loading (assuming that the point considered is not singular for the middle
surface).

Let us introduce a local semigeodesic system of coordinates at the
point ({61, p. 445). With an accuracy within small quantities of higher
order for v << 1 (Fig. 6, 7) (the subscript j is omitted) we may obtain

a0 11 o __ o0 0 ~0

D=~ S R 5 — R e T P Y] RSV
I 2% Tor ds Jmov ] as, 3svdst 33 2 (‘ 10) Cup

oy [ cosv, 04\ , sinye ’5’4"\ ] Enol
- 10
0

oAz \3Gx o | ArpAs, \8dy - Rvo’

rm l

: ¢
day . 0} I T |

v = oy L vf €OS Yo (3:_43 L sinye (OA.Z
€= Cuo = } ‘4101‘120 Oag/o ! 4'1]0.‘120

/ Cuy € [
*n== Cup - \/? /{\,t”{

The index 0 indicates that the corresponding quantities are evaluated
at the pole.

We resolve the principal vector and the principal moment into com-
ponents tangential and normal to the surface:

F=Fp ‘evF + Freng, M= "‘!T‘evu + e
Obviously,

Cunr = €08 (o — Tp) @1 st (1o — ) € F - cox (1o — Tan) €' - sin (1o -1 ¥y) €}

Cg==— sl (‘{(E“—“f[:) e, F--cos (70“‘{13} ef — sin{y, — Tgx) e '4"()”‘((":(}“'{51)92!
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With the aid of these relations, retaining in (3.9) only the temms
with singularities, we obtain

Tv, ~ _)—1_% {GT 1""7“’_ a'l’l F-""!“ BT ‘)I'[T —’— ‘Bn‘,l]n}

where
2cos? (Yo —vg) sin2(yo—vyg) 1
al = " F evF + v F eipv &t == —V- €.y (310)
, « n (o)
gro_cos2ya/t 1 N\ gy SR Co—ra)
4 v <R10 R20 y €, + v
1 708 Yo —Yy) ;9.4, sin (2o —vp) 041\ }e
I [ A1 Az '\Um) Ar0Azo (daz }OJ "o
B { sin(vo—vp) 4 1 [c08 (2Yo — Yyy) ’0A1 sin (“0_"1‘1) < ) ]} M
- 1_ v v [ AygAag daz) A10A20 om

{COS(Yo—-‘.’M) 1 [Sin(Z‘:’o—YM) aA1> €08 (2 — Y ) 8A2>]
v? + T A0Azo (8(12 0 410/1-:0 8a1

1 sin (vo — v |
M= - BT (3.11)

If we retain only the principal singularities in expressions (3.10),
then

, 2cos? (Yo — ¥,.) sin 2 (yo — p) - 1
2=T, ~ [ :) e F 4 " F etF:] Fr 4 ™ enFy +
sin(vo-—,) sin (Yo — ¥ ,p) €os (Yo—Yy) -
. i Moo My [__ “vz 1 e - = eMIM, (3.12)

From (3.11) and (3.12) it may be seen that the character of the
principal singularity does not depend on the form of the middle surface
or the choice of coordinates.

4. All the above is of a static-geometrical character and does not
depend on the form of the relations between the tractiors and moments and
the components of strain of the middle surface. We have considered only
such singularities of the solution as are static. In particular, the well-
known logarithmic singularities are lacking.

The latter will occur if, assuming a generalized Hooke's law, we de-
termine the periodic part of the stress functions vector U000,

A detailed study of this question requires the use of additional
mathematical apparatus, and will be presented in a separate paper.

We shall here confine ourselves to the consideration of a simple
illustrative example to clarify what has been said above. Consider a
circular plate subjected to a central normmal load P (Fig. R). We have
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I -
E:E:G’ ay=0, wg=9, Ai=ry, Ay=rey (P:TZ)

Further
Fl mp-en, M]_z 0, (r—r1)= ropep

F}X(r—rg)=.prgpe¢, Wloz Pr‘gpe,
o_l, @_1 ©_o0 i
= o " Im' 8  opdp 09F

we have assumed F,* = M,* = 0. Further, lettingy = 0 andy = 1/2#, from
expressions (3.9) we obtain

My=5pP, T,=Ty=8=M=H=0 (v=

T 2nrgp P, Ny= 0)

Let us now determine the periodic part of the stress vector U0, From
the character of the state of stress it follows

L]

uooo — uOOO (p)’ ) o0 — wooo = 0

The total bending moments take on the form
P _Ehe 1 oo

Ehe du°®® (4.1)

The equation of continuity will be written down in the following form:
p Lt 4 (1 ) (My— ) = O

Substituting the expressions for the moments (4.1), we obtain a diffe-
rential equation for the determination of u000:

dzuooo du®°® SO0 __ (14+p)P Eh_c
& Tdet P do u= LT 9/('_ ro)

Its particular solution has the following form:
Ehe

0= —(1 1
u +we np[( 0)

Using it, we obtain from (4.1) the well-known expressions (see [9])
for the bending moments:

P14 p _ P4 144
M1=2—n{—-z--lnp+1}, Mz._z—;{ v lnp+-—-2--}

Thus the treatment of a simple example by means of the dislocational

procedure has permitted all the singularities of the solution to be
isolated.

In the general case the problem is reduced to finding particular solu-
tion of the system of equations in terms of complex displacements [8 ],
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Fig. 8.

in which the quantities (T.*, T,*, S *, Mt M, H*) are constructed with
the aid of the method discussed here,
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